pyMaxima-Sitzung

7. Februar 2009, 13:17


(%i1) 23!;
(%o1) 			    25852016738884976640000

(%i2) diff(a^4+3*a^3-(1/a),a);
				  3	 2   1
(%o2) 			       4 a  + 9 a  + --
					      2
					     a

(%i3) diff(exp(x^2),x);
					  2
					 x
(%o3) 				   2 x %e

(%i4) diff(sin(x) * cos(x),x);
				  2	    2
(%o4) 			       cos (x) - sin (x)

(%i5) diff(x * sin(x),x);
(%o5) 			       sin(x) + x cos(x)

(%i6) integrate( x^5,x);
				       6
				      x
(%o6) 				      --
				      6

(%i7) integrate((x+3*x^2)^4,x);
				  8	  7	      5
			  9   27 x    54 x	 6   x
(%o7) 		       9 x  + ----- + ----- + 2 x  + --
				2       7	     5

(%i8) taylor(exp(x),x,0,4);
				  2    3    4
				 x    x	   x
(%o8)/T/ 		 1 + x + -- + -- + -- + . . .
				 2    6	   24

(%i9) m:2;
(%o9) 				       2

(%i10) 3*m^2;
(%o10) 				      12

(%i11) 1/2 + 1/3 + 1/4 + 1/5 + 1/6;
				      29
(%o11) 				      --
				      20

(%i12) (x+y) * (x-y);
(%o12) 			        (x - y) (y + x)

(%i13) expand(%);
				     2	  2
(%o13) 				    x  - y

(%i14) solve(x^2-4*x-2=0,x);
(%o14) 		      [x = 2 - sqrt(6), x = sqrt(6) + 2]

(%i15) solve(c+x*y=z,x);
				       z - c
(%o15) 				  [x = -----]
					 y

(%i16) 2^4*4^2;
(%o16) 				      256

(%i17) linsolve([-1*x+-3*y+4*z=a,-2*x+-4*y+3*z=a,4*x+3*y+3*z=a+2],[x,y,z]);
				     6 a + 10	     a + 4
(%o17) 		   [x = a + 2, y = - --------, z = - -----]
					7	       7

(%i18) linsolve([2*x+-1*y+1*z=6*a,0*x+3*y+-1*z=a-2,1*x+3*y+-1*z=3],[x,y,z]);
				   9 a - 12	 25 a - 32
(%o18) 		   [x = 5 - a, y = --------, z = ---------]
				      2		     2

(%i19) linsolve([1*x+a*y=7,3*x+3*y=4],[x,y]);
			       4 a - 21	       17
(%o19) 			  [x = --------, y = -------]
			       3 a - 3	     3 a - 3

(%i20) functions;
(%o20) 				      []

(%i21) plot2d ([parametric, cos(t), sin(t), [t, -%pi*2, %pi*2],[nticks, 80]],[gnuplot_preamble,"set size ratio 1;"])$


(%i22) 
Funktionen-Plot